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ABSTRACT

The aim of the paper is to provide a substantial contribution to the needs of the industry in pre-
dicting aeroelastic properties of the aircrafts.

The program presented here is a part of a larger program which includes also consideration of vi-
bration modes, be used in flutter prediction,

Firstly, the Kernel of the well-Known POSSIO-KUSSNER equation is rearranged, so as to isolate
singular terms, which are very simple analytically, but must be integrate numerically via special techniques
which are described in the paper; the form is chosen in such a way as to integrate function independent
of reduced frequency, so that for each of them, only one integration is needed. For regular terms, on the
contrary, which exhibit a complicated dependence on reduced frequency, conventional integration techniques
are sufficient,

Special attention is devoted to the numerical calculation of Hadamard’s principal part.

It is also shown for which reason doublets representing the wing cannot be located on some spe-
cial points (leading and trailing edges and root and end chords; chords separating elements of different in-
clinations etc.).

An idea of the technique to be used to remove all difficulties associated with infinitesimal thick-
ness is presented.

The order of magnitude of finite thickness effect is given.

1. — Introduction

As is well known, by the term aerodynamic generalized force (AGF) Ahk associated with two mo-
des (h, k) we mean the work performed by the aerodynamic forces on a lifting surface associated with the
mode h by the displacements associated with the mode k . 'As is also known, Ap has a complex
character, and, in general, Ahk #* A -

The knowledge of AGF s is essential in flutter prediction (Fig. 1). Here we have mass and modes

* Work sponsored by Consiglio Nazionale delie Ricerche contract n. CTB 75.00366.07/115.0481,

242



matrices, which are insensitive to reduced frequency k changes, whereas the AGF matrix does depend on k.
Thus we have to face the problem of obtaining zero value of the flutter determinant by an adjustment of
k, by means of one of the -available trial and error or automatic adjustment methods (e. g. Newton—
Raphson).

Hence follows that an efficient method or program for the AGF’s computation should satisfy two
preliminary basic requirements:

i) be sufficiently flexible to variation of k;

ii} incorporate advanced numerical methods of matrix algebra,

Thus the program presented in this paper must be considered as a phase of the general loop of
Fig. 1. Moreover, since calculating the work of given forces by given displacements is a very simple nume-
rical routine, only the problem of determining the distribution of aerodynamic forces on a lifting surface
in steady oscillatory motion will be considered in this paper, for the case of subsonic compressible linea-
rized flow.

2. — Theoretical foundation

The theoretical basis for the problem under concern was established many years ago and will not
be repeated here {1], [2]. Suffice here to say that the problem reduces to the solution of the integral
equation:

(1 w(P) = ng (P, P)qg (PdP’

(for symbols, see the list). As far as the nucleus is concerned, this was also well established several years

ago [3], [4]; but in view of satisfying requirement (i) of art. 1, we have split it into six terms, whose

analytical expression is given in Appendix l. Inspection of such terms reveals that the first four of them

must be calculated once for all, leaving the task of a special computation for each of the last two terms
Next step is the expression of the unknown q{P) under the form:

M N
(2) aP) = 2 X

o anmnum —_——nn V-7
where the nondimensional coordinate u = AB/AC , Fig. 2.

The square roots appearing in (2) stem from the behavior of the flow in the vicinity of the wing
edges. Furthermore in Eq. (2), M + 1 is the total number of aeroelastic modes which are taken in the wind
direction, and N + 1 is the number of modes in the transverse direction: of course, the higher M and N,
the more accurate are the results, and the more time expensive is the program. However, by introducing
(2) into (1), and imposing (2) at a total of (N + 1) « (M + 1) control points, we are led to a system of |i-
near equations in the unknowns s F

The basic operations for calculating the coefficients are an x—wise and a subsequent y—wise inte-

gration.
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There is no difficulty in performing such a task as far as Gg and Gg are concerned. Likewise,
terms 62 . G3 ,» G4 lead to the contribution described in Appendix I1.

A real problem arises in connection with the term G1 which exhibits a non integrable singularity
of order 2.

The root of this lies in the well-known circumstance that the actual form of Eq. (1) would be:

0 :
3) w(P) = lim az[IEH(P,P.z)q(P)dP]

where H(P, P', z) is the velocity potential due to a pressure doublet acting in the lifting surface plane, and
z is the coordinate as measured normally to such surface, of equation z = 0. Differentiation under sign,
wich would be illegal if performed in the conventional way becomes possible if one defines it according to
Hadamard’s rule.

o H
Thus, with G (P, P') = ( > we obtain Eq. (1).
dz _
z=0
Let us consider in greater detail what happens as far as the term withG,isconéerred {the other terms
do not present any problem, since they are integrable, and for them Hadamard's rule coincides with the ele-
mentary one).
For such term, Eq. (1) reads:

M N
=2 X q C

i omo'n 'mn “ij,mn

(4) wix,, y) =w,

where:

(5) _][‘1<:(77)d1717“\/1—~n2

it ¢ (X— ;Y~ ¥ 17)
e ty; —m)? mote
and:
) U-—u 1—u
(6) ¢m(xa' V,'n)=/[1+ ] Um du
0 \/(U hd 0)2 +€2 u

Numerical evaluation of (5) requires an appropriate integration technique, that was used in the pre-
sent approach.,

We write:
(7) O Xi o ¥; . 1) cmV1-9% 79"
2 = wmn (XI ’ YI r "7) =
RV P
_ by v +( 3 wmn) ( 1 | +(n—yj)2( *P:)
g2 n—Y; -
n—vy) on n=y; j an n=y;
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The expression of the last term is calculated in an exact form, without having recourse to any
finite-difference approach; this is possible on account of the circumstance that the integral (6) can be ex-
pressed analytically via elliptic integrals.

Subsequent integration of such term is numerically elementary.

As for as the first and second term is concerned, we are confronted with the calculation of the

1
dn
PPZ:‘IJ (X-,y-,\/-)— _.
mer e (n = y;)?

1

1
LR dn
-(32)
=y 1

i

expression:

(8)

At this point we must remark that if the wing planform exhibits discontinuities at 7 = Y; in the
profile itself or in its derivatives (Fig. 3a, 3b), Eq. (8) would be transformed as follows:

Yj 1

N 'dn dn
PP2=y + ¢
" /;nj—v)z " ﬁ"""i)z
(©) ! " Vi :
] —
3y, \*t dn G dn
PP1= + e
(an ) «/’ﬂj—v on nj—y
a=y; ! n=y; %Y

As a matter of fact, according to Eq. (3), the integrals appearing in (9} should be written:

- Y;
A e
L=%lm—»z [ ————
2209z L J 2y —n)?

+1

i
H
N
o3
mIQ,
N
) 1
N
=<
N
X}
+il a
==
|
=
e
[ I

+1
leading to:

] v, 1 1
£ = lim £ tan'! = }-_- ¥
2 250 32 z y;1
+ ) 5 o
= = lim ¥z (Iog Vitus — u) 1
1 z+0 0z Vi~

z

It is seen that |, is always finite, except for control points lying at the wing tip (which would ho-
wever be partially compensated by +/1 — n2), whereas 1, becomes infinite.
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oy, \" oy, . . e
However, if 3 = Ty ; i,eif the planform wing has no points of discontinuities in
Yy

the edge slopes, the two terms cancel, whereas the reverse is not true.

In other words, Hadamard’s rule is not applicable for wings such as that of Fig, 3a, whereas it
would be paradoxically valid for Fig. 3b (where, however, other dominant factors would arise; first of all,
absolute inadequacy of a linearized theory).

3. — Description of the program

a) Choise of control points

According to what has been said above, we must avoid placing control points on the wing tips,

and in the discontinuities of the wing, Furthermore, an elementary calculation shows that ( 5 Um)
becomes infinite as u = 0, u= 1 so that also placing control points on the leading and trailing
edges would be illegal.

It should also be remembered that all concerns about the singular behavior of the kernel vanish
as we are at a reasonable distance from the control point for which the kernel is being evaluated, and
where elementary integration techniques can be applied. Therefore, we may divide the wing planform into
“branches”’, Fig. 4, each of them must necessarily consist of a constant slope region; however, for the rea-
son described above, we may also have different branches in a constant slope region. We choose, above all,
the values of U for which we want control points, Fig. 5, no restrictions are placed on such choise, except
avoidance u = 0, and u = 1, as said above.

Furthermore we give an approximate value of N, i. e. of control sections, the program automati-
cally distributes the total N in the various branches, with the following rules:

i} avoid wing tips and discontinuities,
ii} if a fraction of N remains the remainder is attributed to the external branches;
iii}  the number of elements in every branch must be an even number not smaller than 4 (this is in con-

nection with the requirements for subsequent y-—wise integration).

The final number N” of control sections may be a little greater than the previously prescribed one,
in order to avoid unpleasant surprise, it is suggested to have a rough previous estimate.

At the end of the section choice, control points may be distributed as shown in Fig. 6.

A small drawback is associated with the fact that no control points are placed on sections such
as MN, PQ, RS of Fig, 6, even if two adjacent branches have the same slopes,

Although this drawback can be easily remedied, the pertinent modification is not included in the
program, that would become otherwise too heavy.

b) Sweep on control points

For each value of the chosen U's, Fig. 5, and for each branch we sweep on the sections, and for each
of them we calculate geometric quantities, and other quantities which solely depend on the control section

and on the control point, such as U, € and which must be used in subsequent y—wise integration.
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In order to reduce calculation time, different sections are provided for quantities independent of m
and n, and for quantities dependent on such exponents.

c) At this point we are ready for calculating the coefficients C_
ij,mn
We must integrate, for the control point under concern, to all the branches, and we must distinguish

between control—branches and non-control—branches (relative, of course, to the actual control point).
c1) As far as non control branches are concerned, x—wise integration of all the G; s, Appendix 11, is ele-
mentary, and no logarithmic terms arise. A special subroutine (SUBINX) perform the integration for all the
six G; s and for all m and n simultaneously. Integration is performed via elementary numerical rules with
error control: a special index avoids integration for values of m, n, i for which this is unnecessary.

A similar technique is employed for the y—wise integration.
¢2) For the control branch, the functions Gg , Gg are treated exactly in the same way as it has been
described under {c1).

For the other functions a special technique was developed.

Let:
(10) cmV1 —n? - 9" =F_(n)

The integrand of (5) reads:

B{Un), ) — 9 (UID)L0)

(11) F.im) ¢ (Uln), et)) =F_(n) >

(U{n),0) — ¢_(Uly), 0)
+ F_(n) Pm (Ul m_ Y +

n
v2

Fom) = F (y) L ty) Z,,(Um), 0)

v2 v2

+ ¢ (Uly),0)

with v = lyj - 7nl.

The first term is evalueted via elliptic integrals, we have:

(12) b v, e)=0" g[BV () -2 K+BZ v E+BE v A

where the functions BQ) , Br(nz), Br(n3) are defined in Appendix Ill, and, of course ¢_ (U, O) has the same

expression with ¢ = 0.
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Furthermore, since:

A
I

Kg (v) +K_ (v) log v

E=Eg (v) +E_(v) log v

A= Ag W) +A ) log v

it is easy to obtain the logarithmic part of (11), to which the special y—wise integration routine is subse-
quently applied.
The second term is elementary. As far as the third term is concerned we have:

Foln) = F (y)  F._(y)
_ P
v2 T * Fopp (0. V)

{see Appendix V) of these two factors the first gives rise to PP1, Eq. (7), (8), the second can be integrated
by elementary techniques. Finaily, the last term of Eq. (11) gives rise to PP2, Eq. (8). By grouping all such
terms together we calculate all the expressions (7).

Since also other terms such as G2 . G3 can be reduced to a logarithmic and a regular parts, the
expressions (12) are used for them too,

Also a logarithmic part is to be extracted from G,

Once we are ready for the y—wise integration, we also apply here routine integration methods to

the regular part and to the logarithmic part.

d) Error control,

Error control is done by comparing for every m , n, i the values obtained with the previous ones,
if the percent error is greater than a prescribed threshold, the integration step is halved, until the prescribed
accuracy is reached.

As for as the regular part is concerned, when the step is halved, the integrals corresponding to the
previous approximation do not need be recalculated, since they are the odd steps of the present approxima-
tion and the weight is the same for all of them, so that only their sum must be recorded, the same is not
true for logarithmic terms, for which weigths change from one step to another and recording all the pre-
viously calculated integral would be too heavy from a memory point of view. However, here too a special
index for every value of m, n, i {or group of them) automatically blanks out integrals for which the pre-

scribed accuracy has been reached.

e) Final calculations. Final calculations involve:

i) inversion of the aeroelastic matrix;
ii) multiplication by modes matrices;
iii)  determination of pressures on the lifting surface for each mode;
iv)  multiplicazion by the transverse modes matrix and integration to all the lifting surface in order to
obtain the A, ‘s,
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No special comments are deserved by the latest steps, which are based on standard routines.

f) A summary of the routine is described in Fig. 9.

4. — Further improvements

(i) Thicknesseffects. . Introduction of finite thickness wayld imply doubling the unknowns (a doublet
plus a source per every point of the lifting surface) and the conditions (upper and lower face of the sur-
face). The effect can be shown to be of the order of the square of thickness chord ratio.

No significant improvements in the solution may be expected, but all singularities and infinites
would disappear, although “infinite’” quantities would become “very great” quantities, very difficult to be
handled numerically. In summary, introduction of thickness effect is considered unnecessary.

(ii) Wing planform. The present program is confined to wing with rectilinear edges, simple modifi-
cations would allow to consider curved edges too (e. g. circular wings).

(ii) Control points location. The difficulties of avoiding sharp variation section may be overcome
by the introduction of a small region of finite curvature. Again this drawback is due to doublet scheme
coupled with the infinitely small thickness assumption. The pertinent technique may solve an important point
of the program.

(iv) Use of other functions Studies on the convergence are being carried out in order to establish
which kind of functions, other than the u™ and 7" of Eq. (2) may be more convenient.

A first attempt in substituting orthogonal polynomials to u™ has proven unsatisfactory, on account
of too large round—off errors.

5. - Concluding remarks

A program for the calculation of aerodynamic generalized forces has been presented. It is based on
the use of oscillating doublet distributions in an inviscid compressible subsonic flow.

Theoretical foundations have been described, location of control points have been discussed, general
feature of arithmetic and logic arrangements has been presented. Areas of flutter improvements are indicated.
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APPENDIX |

(see Tig. 10)
k2 k2 _
{i—1) G =G, --3sz+—2——~ G3+‘;‘;2' G4+GS+JG6
1 x — &
(1-2) G, = ) 1+
ty = n) Vix — 62+ g2y —n)2
1
(1-3) G, = -
Vix = 52 + g2 (y — n)2
{1—4) G; = log [\/(x—£)2+ Bz(y—n)z—(x—é’)]
(1—5) Gy = Gy — 1
(1-6) G —kz[f (I M el el " +
5% 1109 9 1-M
)
'y+f2+F']'— +
Vix — 82 + 2 ly — n)?
k2 M 1 k
+———[—--—-——-+7————-+lo ]
2 g2 2 2(1+M)
'y kS k2 7
(1-7) Gg = kz[’"— f, + F' ]‘— t—
2 Vix—82+2Zly-m? 2 2
where:
1 . 1 (a 2m
fla)e— 3 — _)
e 2 1™ ml(m+ 11\ 2
1 1 agm
fa=-3% —  Je(m+ ](—)
PAC) Tm 2m!(m+l)![ 2(m+ N\ 2
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o m 1
with: a=kly —nl, ¢(m) = ?r—,¢-(o)=0
r
2
cosB-—1-'g—
£ (B) =
B
sin B —-B
S(B) =
B

with:

k
B = ..B;[(x -8 -M \Ax - £)2 +82ly-n?]

=0 2m+

-----

k

F' (@,8) = Va2 + 82 5

N it

(2m+2}1 2m

2k+1
| — a2(m—k) g2k—1

2k

= L] ""l k=1 2 m
F'(a, B) = — \/a2 + B2 Z, qu AL

(2m+1)! 2m -1

a2im —k) g2k—2
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(H=1)

(1n-2)

APPENDIX Il

The term G, gives to the coefficient amnn(X , y) a contribution given by:

1 L 1
| —u
anz'm(xly)= cmdn 0" VI -7 /:’m\/ ° du
% u Viu - )2+ é?

-1

Likewiese for the term G3 we have:

-1

1 ' u-u
B, .y = [cmVi-q2 q"dn - Y
A VIU —u)? + €2

The u—wise integrals in both cases is easily seen to reduce to elliptic integrals (Appendix Ii1). Since,

as well known, elliptic integrals in the vicinity of u (modulus) = 1 exhibit a logarithmic singularity, we reduce
both integrals to the form fa(v)dv + fb(v) logvdv where v=y —n and a (v), b (v) are regular

known functions. Thus the program includes a special subroutine for the calculation of the logarithmic inte-

gral which, on the other hand, is known to exist.
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APPENDIX 11

The foilowing quantities must be computed for (12):

U=-u—(z2l- ; e:M; A=\/“—U;2+€2;
cin) cin)

A-B 1-(A-B)2
B=+VU2+e? ; a= ; k2='—’—“"‘—( J

A+B 4AB

k'2 K’
2 92 . =N
k 1-k* ; T 2 ,kv ”
NE: ) R A(1-2U/c2
ooov (A+ B)2 [UA + B(1= u)]
1 1
H=1~at{l—ar); g=~—__ ; 8=-

VAB 2(1+a? 7)

1 o) @2 _ 52 L B s N3
ND = s N N =2 N P NG =35 N

rm m+1

0d of rsj

V m-j 2-1 m\ [m—j o (e
NI = 3, 3 -1l () ( ) HY @2t 2 ~(m=2icll) (g2
il\a

. m-j 2-1 m\ fm—j +2+2.—(m=2) ~(2) _]
(2 _ o —1)@ a g9 s ce
Nem = %q Es =1 (i ) ( q ) H e sl k2

1

. .jor1 ny { m—j i — 4 —_—
@B - " 5 (<19 o qd*2+2,— (m=1) (3)
Nem Fo 5 OV i q i g J1—aZ Ve K2+ K2

The coefficients C:;i must be computed by means of the recursion formula:

4 _ i-Nn\/j—-2 j—k—1 {j-1)
Chic = 8( h )<k—1> - ~[la-2m) 0" +
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+-6+6n) (V72 - e P+ c;{;i’1 - c;"a“k‘? +
*4-6n) (Cr:j-—za,)k.—z 2¢,” 2 et +o :)k+ 26,73 1, k=2
—ach® +a2edd 4 o —20i¥ + h'k3’)+
t-rv2n) (0 -3 Co g kg * 3 N -c'f‘_‘;’k»
3 C:lj::.) K-3 -9 C’(\,:;,’k— +9 C(": ;)k—1 -3 C:‘Ij:;,)k +
C": :)k 3 -9 Clii::,,)k.—z +9 C:’Tj—_-:,’k—‘l -3 C"(I’::,) k +
tor i —aeht r it —ollY) +

{i-1)
+ 2= [ch 1~ Ch—-1,k] *

: ; i (-2}
(i—2) {i-2) i-20 _¢
Tt [Ch—h k=2 = Ch-1,k=1 G2 h.k—1

h— 2 k—- h—2,k . “h—1,k—1

_ ¢l + -2 _pl-2 C(,—z)}

where § = 0 for £=2,3 §=1 for 2= 1.

The starting values one:

C(:: 00 ~ 0O C(ﬂ,o,o =0 (:—(13:30 =0
Cg,(’),o =0 C(?c)),o,o =0 C((Js()) o =0
oo =1 Cg?(’m,o =0 Cf::,o !
Céfé,o =3 Cgc)J,o =1 C(::J,O =2
Chor =2 Coon = O Coon =
c:(21,)1,0 =2 Cot0 =0° C;,z:,o =1
Cg,ln =1 Cr11 =0 C(zs:;n B
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() (0 2 @
M(r?‘i =58, uN_ — 8, #(1+u) L B + ¢ N, me2

T

m+1 1) @, (0
Bg\z) = {'" 7 Mrm ~ +#°

where:

,,1(2)=1 for £=23 ; ﬂfQ)-T\f for &=

u(Q) 0 for £=23 ; ng)=kv for £ = 8

—gom [BY .2 K+ 82 E+ 82 A]
m m

g
3
|
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APPENDIX IV

Let:
E 1....172
(Iv=1) B = cln)
C=q"

we have:

A =V1i-=vV1-yZ+A'v w=n-y
whence:

, V1-m —J1-y2 nty

n -y Vi-n% +V/1-y?

Again:

Y
A'=— ______+Al!(n__y)2

Vi-y?

with simple algebraic manipulation we find:

yt+tn

VISVZ WiImv2 +imn@) ty ion? + nvi=v?)

(Iv—2) A" =A"(n,y) = —

So, in exact form:

(Iv=3) Aln) = Aly) + Ajy) v+ Ay, (0, y) v2
Y L]
where: Ap = - —————  and: App = A",
Vi-y2
By the same .....
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B=B(y)+ B, (yv
(v —4)
C=C(y) +Cyly)v+Cp, (n, v) v
where:
Bly)=Cly) ; By = L
dn

- w~ (M\ n-2 n-2
Ciy =y ; Coly)=ny""; Couln, y) = % (=) &2 y"

o \r

It should be noticed that Egs (IV-3), (IV—4) can be considered exact expressions of the various
quantities stopped at second order of v, and all the functions appearing in them can be computed without
having recourse to finite differences, but through finite arithmetic operations only.

This procedure, that has been extensively used throughout the problem to all terms appearing in
{11) completely avoids significant round—off errors.

By combining Egs. (IV-3) , (IV—4) one finally gets:

F(n) - F(y) Fo
2 = + Fop (. )
v v

where F = AB C and:

Fo = Aly) Bly) Cply) + Ay ly) Bly) Cly) + Aly) B, ly) Cly)

whereas the lenghly expression for Fj, (n,y) is left to the reader.
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NOMENCLATURE

c =  chord

k = reduced frequency

q(P} =  doublet distribution

Ann =  coefficients of expansion of q

u = nondimensional coordinate, Fig. 2
v = | y; — " |

w =  dynamic aeroelastic local slope

X = chordwise coordinate, Fig. 2

y = spanwise coordinate, Fig. 2

z = coordinate normal to lifting surface plane
Ank = aerodynamic generalized force
(", Bg) , B‘:" = see Appendix Il
Cij.mn = see (5)

E = elliptic integral of second Kind
E., EL = see page 7.

F, = see (10)

an , anp = see Appendix IV and page
G(P, P') =  kernel of integral equation

G (i= 1., 6 = terms of G
H(P, P', 2) = velocity potential
K = elliptic integral of first Kind

K¢ » KL=  see page 7.

Iy =  see page 4.

3 = see page 4.

M =  number of chordwise aeroelastic modes
M, = Mach number

N = number of spanwise aeroelastic modes
N* = number of control sections

PP1 = see (8)

PP2 = see (9)
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x — x (n)

U (n) = pares
8 = J1-wm?
_ Bly-
€ln) = T )
n = nondimensional spanwise abscissa
A =  Heuman's Lambda Function
Ag AL = seepage’.
z = integration surface
P = see (6)
Y = see (7)
SUBSCRIPTS
i = chordwise index of control points
i = spanwise index of control points
h, k =  mode index

other subscripts are defined above

SPECIAL SYMBOLS

f = principal part of an integral (Hadamard’s rule)
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NOTICE

At the moment of the presantation of the paper, the program was completed, but not
wholly tested, on account of difficulties in availability of computer time. It is expected that the
final list, including numerical examples will be ready by December 1976.

it will send — post prepaid — to everyone who makes a request to:

Istituto di Tecnologia Aerospaziale
Universitda di Roma
Via Eudossiana 18 , ROME, ITALY

Attn. Prof. Paolo Santini.
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